
CSimpl: A Rely-Guarantee-based Framework for
Verifying Concurrent Programs

David Sanán1, Yongwang Zhao1,2, Zhe Hou1, Fuyuan Zhang1, Alwen Tiu1, and Yang
Liu1

1 School of Computer Science and Engineering, Nanyang Technological University, Singapore
2 School of Computer Science and Engineering, Beihang University, Beijing, China

Abstract. It is essential to deal with the interference of the environment between
programs in concurrent program verification. This has led to the development of
concurrent program reasoning techniques such as Rely-Guarantee. However, the
source code of the programs to be verified often involves language features such
as exceptions and procedures which are not supported by the existing mecha-
nizations of those concurrent reasoning techniques. Schirmer et al. have solved a
similar problem for sequential programs by developing a verification framework
called Simpl, which provides a rich sequential language that can encode most
of the features in real world programming languages. Since Simpl only aims to
verify sequential programs, it does not support the specification nor the verifica-
tion of concurrent programs. In this paper we introduce CSimpl, an extension of
Simpl with concurrency-oriented language features and verification techniques.
We prove the compositionality of the CSimpl semantics and we provide infer-
ence rules for the language constructors to reason about CSimpl programs using
Rely-Guarantee. We show that the inference rules are sound w.r.t. the language
semantics. Finally, we run a case study where we use CSimpl to specify and
prove functional correctness of an abstract communication model of the XtratuM
partitioning separation micro-kernel.

1 Introduction

In the past two decades, formal methods have been successfully applied in the verifi-
cation of many critical systems. Verification of sequential programs has gained much
attention both in academia and in industry, and now there is a reasonably strong tool
support in this area. However, nowadays critical and high-assurance systems are often
designed for multi-core architectures where multiple processes run in parallel, but veri-
fication techniques and tools for concurrent programs are relatively less developed than
those for sequential programs. One of the main issues to be solved is the verification of
implementation level programs that involve concurrency; this is explained below.

To ensure the reliability of computer systems, verification of functional correctness
and security properties must be applied not only at the specification level, but also at
the implementation or even at the machine code level. Verification at such low lev-
els requires modelling languages that are able to capture the features in programming
languages such as exceptions and procedure calls. On the other hand, most existing
techniques for the verification of concurrent programs stem from Owicki and Gries’s

2

work [11] which introduced techniques for the verification of parallel programs. Later
Jones [4] introduced Rely-Guarantee to improve Owicki and Gries’s method by allow-
ing compositional verification. The Owicki-Gries method has been mechanized in the
Isabelle/HOL theorem prover in [10], and Jones’s Rely-Guarantee method has been
mechanized in Isabelle/HOL in [9] which follows the specification in [14]. Also, [1]
models in Isabelle/HOL an algebraic specification of Rely-Guarantee. Although the
languages used in previous mechanizations of the above mentioned methods are suit-
able for verifying system specifications, many implementations cannot be directly cap-
tured in those mechanizations. Therefore there is a need to develop a richer modelling
language to accurately capture the behaviour of programs at the implementation level.

Simpl [12] is a while-language that supports most of the features of real world pro-
gramming languages. The syntax and semantics of Simpl are modelled in Isabelle/HOL
and Simpl has been used in the verification of seL4 source code [8]. However, its design
aims only at reasoning about sequential programs, consequently, this language lacks
constructors for parallel composition of programs. Moreover, its proof system is based
on Hoare Logic for the verification of sequential languages, which cannot be used for
reasoning about concurrent programs.

Building on the Simpl framework and the Rely-Guarantee method, we develop a
formal verification framework in Isabelle/HOL, called CSimpl, for verifying partial cor-
rectness of high-assurance concurrent systems. CSimpl extends the work in [9, 14] with
a richer (sequential) language based on Simpl and concurrent constructors. The main
contributions of this paper are as below:

(1) We extend Simpl using the notion of computation [9, 14] to introduce parallelism
in two layers: the bottom layer is the execution of sequential Simpl programs extended
with a synchronization primitive Await over shared variables; and the top layer is the
parallel execution of the bottom layer programs by means of a parallel composition
operator. While existing Rely-Guarantee methods are mechanized for reasoning about
abstract specification languages [9, 10], our method goes one step further and covers
most of the features of the C99 language. CSimpl is able to express system language
features such as exceptions, procedures, and dynamic programming, among others.

(2) We define a compositional semantics of Rely-Guarantee for CSimpl. We also
provide a set of inference rules for the Rely-Guarantee proof system and we prove that
they are sound w.r.t. the semantics. The rich expressibility of CSimpl means that the
number of inference rules of the Rely-Guarantee proof system is much higher and their
complexity is significantly increased. The CSimpl semantics, the Rely-Guarantee proof
system specification and its soundness proof comprise more than 15k lines of proof and
specification in Isabelle/HOL and Isar3.

(3) As a case study, we specify in CSimpl two XtratuM [3] services for queuing
inter-partition communication and we prove the correctness of an invariant on the queu-
ing communication structure. Inter-partition communication is the mechanism used to
implement information flow and is critical in proving event-based non-interference. Xs-
tratuM is a separation micro-kernel for space and time partitioning of applications. In
its latest version XtratuM support multi-core architectures, allowing one to run appli-

3 Due to space reasons we only show some excerpts of the semantics and proofs, the whole
model can be found at: http://securify.sce.ntu.edu.sg/MicroVer/CSimpl.zip

3

type synonym ’s bexp = "’s set"
datatype (’s, ’p, ’f) CSimpl.com =

Skip | Throw | Basic "’s ⇒ ’s" | Spec "(’s × ’s) set"
| Seq "(’s ,’p, ’f) com" "(’s,’p, ’f) com"
| Cond "’s bexp" "(’s,’p,’f) com" "(’s,’p,’f) com"
| While "’s bexp" "(’s,’p,’f) com" | Call "’p"
| DynCom "’s ⇒ (’s,’p,’f) com"
| Guard "’f" "’s bexp" "(’s,’p,’f) com"
| Catch "(’s,’p,’f) com" "(’s,’p,’f) com"
| Await "’s bexp" "(’s,’p,’f) Simpl.com"

datatype (’s,’f) xstate = Normal ’s | Abrupt ’s | Fault ’f | Stuck
type synonym(’s,’p,’f) config = "(’s,’p,’f)com × (’s,’f) xstate"
type synonym (’s,’p,’f) body = "’p ⇒ (’s,’p,’f) com option"
type synonym(’s,’p,’f) par_Simpl = "(’s,’p,’f)CSimpl.com list"

Fig. 1. Syntax and state definition of the CSimpl Language

cations in parallel in multiple cores. Using our new Rely-Guarantee proof system, we
prove that the specification of the inter-partition communication services correctly in-
troduces and removes messages in the communication channel. The specification and
the proofs comprise 3500 lines of formalization. This is to the best of our knowledge the
first attempt on the verification of separation microkernels targeting multi-core architec-
tures. Other works such as [15, 16] verify functional correctness and non-interference
for sequential micro-kernels, and the work in [2] focuses on the verification of sequen-
tial applications using the ARINC standard.

2 CSimpl Language

2.1 Simpl Overview

Schirmer introduces in [12] a verification framework for imperative sequential pro-
grams developed in Isabelle/HOL. The verification framework includes a generic im-
perative language, called Simpl, which is composed of the necessary constructors to
capture most of the features present in common sequential languages, such as condi-
tional branching, loops, abrupt termination and exceptions, assertions, mutually recur-
sive functions, expressions with side effects, and nondeterminism. Additionally, Simpl
can express memory related features like the memory heap, pointers, and pointers to
functions. The Simpl verification framework also includes a Floyd/Hoare-like logic to
reason about partial and total correctness, and on top of it, the framework implements a
verification condition generator (VCG) to ease the verification process.

In order to capture all the aspects of abrupt termination, assertions, and function
calls, the program state ’s in Simpl is modelled in Isabelle/HOL as a datatype xstate
(shown in Fig. 1), which is composed of four different constructors: Normal ’s, rep-
resenting a regular execution; Fault ’f, representing a failed assertion; Abrupt ’s,
representing an exceptional state; and Stuck, representing a state where a call to a
non-defined function is made. Additionally, the semantics requires an environment Γ

containing procedure definitions, i.e., is a partial function from the set ’p of procedure
names to the body of the procedures. Both features regarding the state and procedures
definitions are used in CSimpl.

4

2.2 CSimpl Syntax

The syntax of CSimpl is shown in Fig. 1. CSimpl extends Simpl by adding two con-
structors for concurrency: Await, which takes two parameters cond and body, and
Parallel Composition. Await allows synchronization of processes under the boolean
condition cond and then it atomically executes body, which is a pure sequential Simpl
program. This allows us to use Hoare logic for sequential programs and the original
Simpl VCG in the verification of the atomic blocks. Parallel composition happens at
the top layer (root program), and it can not be nested with other constructors like in the
approach followed [6]. Therefore, a parallel program launches n sequential programs
that are executed concurrently and that do not create new concurrent threads. A parallel
program is defined as a list of sequential programs. Since we are aiming the verification
of programs without dynamic creation of process, this approach is not a problem for
our goal and simplify the mechanization.

CSimpl’s syntax, following the syntax of Simpl, is defined in terms of states, of
type ’s; a set of fault types, of type ’f; and a set of procedure names of type ’p.
The constructor Skip indicates program termination; Seq s1 s2, Cond b c1 c2, and
While b c are respectively the standard constructors for sequential, conditional, and
loop statements. Throw and Throw c1 c2 are the complements for abrupt termination
of programs of Skip and Seq c1 c2, and they allow to model exceptions. Call p in-
vokes a procedure where p is a procedure name; Guard f g c represents assertions,
where c is executed if the guard g holds in the current state, fault of type ’f is raised
otherwise. Finally, Spec r and DynCom cs respectively introduce a nondeterministic be-
havior expressed by relation r, and a state dependent dynamic command transformation
which is used to model blocks and functions with arguments.

2.3 CSimpl Semantics

The small step operational semantics of CSimpl is a predicate inductively defined based
on an environment for procedures Γ and a pair of program configurations ((P,s),

(P’,s’)) where program P in state s, transits to P’ and state s’. It is represented as
Γ`c(P,s) → (P’,s’), where the small c indicates it is a step transition in CSimpl. A
CSimpl configuration is defined as a tuple (P,s) where P is a CSimpl program and s is
an xstate. A Component CSimpl configuration (p,s) is called final if p= Skip or
p = Throw and there exists a state s′ such that s = Normal s′. A final configuration
cannot progress to another configuration.

CSimpl extends Simpl with rules for synchronization on shared variables, Await,
and the parallel computation shown below. For space reason we only provide the small
step semantics rules Await and AwaitAb for the Await command (Fig. 2). The rest are
similar to those defined in [12].

The Await rules leverage Simpl’s big step semantics to atomically transit from the
initial configuration (p,s) to the next state t resulting from the execution of p from s
and it is expressed as Γ`〈p,s〉 ⇒ t. The two rules express the situation where from a
current state s satisfying the synchronization condition, the atomic program in Simpl
ends in a state t that can be an abrupt state as a result of an exception thrown in the
sequential program for the rule AwaitAb, or any other possible state for the rule Await.

5

s ∈ b Γ¬a ` 〈c,Normal s〉 ⇒ t
¬(∃t ′.t = Abrupt t ′)

Γ `c (Await b p,Normal s)→ (Skip, t)
AWAIT

Γ `c (P,Normal s)→e (P, t)
ENV

s ∈ b Γ¬a ` 〈c,Normal s〉 ⇒ t t = Abrupt t ′

Γ `c (Await b p,Normal s)→ (T hrow,Normal t ′)
AWAITAB

∀t ′.t 6= Normal t ′

Γ `c (P,s)→e (P,s)
ENV N

i<length Ps Γ `c (Ps!i,s)→ (r, t)

Γ `p (Ps,s)→ (Ps[i := r], t)
PAR

Γ `p (Ps,Normal s)→e (Ps,Normal t)
P ENV

Fig. 2. Small Step and Environment CSimpl Semantic rules
This distinction is necessary since a Simpl program can finish in an Abrupt state, how-
ever the small step semantics does not use the state Abrupt. Instead, a CSimpl program
finishes in an exception state when the last configuration of a computation is a pair com-
posed of the program Throw, together with a Normal state. Note that big step transitions
use sequential Simpl programs, therefore the environment in the atomic step has to be
a function from procedure names to Simpl programs, which do not contain Await in-
structions (for the same reason the body of Await cannot contain nested Await neither).
Γ ¬a translates bodies of procedures in Γ into Simpl programs if they do not contain any
Await instruction, removing from Γ those procedures containing Await instructions.
Ps!i means accessing the i element in the list Ps, whilst Ps[i := r] means substitute the
i element in Ps for r.

A Parallel CSimpl configuration is defined as a tuple (Ps,s) where Ps is a list of
CSimpl programs and s is an xstate. Parallel CSimpl semantics is inductively defined
by means of rule PAR in Fig. 2. A parallel configuration (Ps,s) transits to another
parallel configuration (Ps[i:=r], s’) when there is a program i in Ps such that
Γ`c(Ps!i,s) → (r,s’). It is represented with Γ`p(Ps, s) → (Ps[i:=r], s’). Similarly to
component configurations, a parallel CSimpl configuration (xs,s) is called final if xs 6= []
and for all i<length xs. f inal(xs!i,s).

Together with the semantic representing component transitions, it is necessary to
define semantics for environment transitions. They are inductively defined using rules
Env and Env n in Fig. 2, where the small e is to express that it is an environment tran-
sition. CSimpl semantics for components can transit from a Normal state to a different
type. However it is not possible to transit from a non Normal state to a different type
of state, i.e. Γ `p (P,Stuck)→ (P′,Normal t) . Moreover, the component semantics
always transits from a configuration (p,s) with p = Skip and 6 ∃s′.s= Normal s′ to
a final transition (Skip,s). Therefore, the environment at the sequential layer needs
to model this behaviour in rules Env and Env n in order to make the semantics at the
parallel layer compositional. Environment transitions at the parallel level are defined in
such a way that they can transit from a Normal state to another Normal state as shown
in rule P ENV in Fig. 2.

3 Rely-Guarantee for CSimpl

Rely-Guarantee [6] extends the specification of a program with two relations R and G
characterizing, respectively, how the environment interferes with the program (Rely)

6

and how the program modifies the environment (Guarantee). Therefore a specification
for the verification of parallel systems using Rely-Guarantee is composed of four ele-
ments: precondition, postcondition, rely, and guarantee.

In contrast to the previous approaches of Rely-Guarantee [9], a state xstate in
CSimpl could be of multiple forms. This requires to modify the definitions of compu-
tation, parallel computation and conjoin, since these definitions need to consider the
environment for procedures. Additionally, it is necessary to modify the definitions for
commitment, assumption, validities for components and parallel execution to consider
the environment, the set of Fault states that have been checked to be non reachable,
the state definition considering different types of states, and the dual postcondition for
Normal and Abrupt states. With regard to the proof system itself, a total of 8 new rules
have been added to the work in [9] to deal with all the language constructors present in
Simpl. Finally, soundness of the axiomatic rules for the proof system w.r.t. the specifica-
tion of validity is proven. Soundness of the rely guarantee proof system is considerably
more complex and larger than the work in [9]. While the work in [9] consists of around
2300 lines of proofs and specification, the current work consists of more than 13000
lines of proofs and specification. In particular, the multiple forms of states considerably
increase the complexity of the proofs.

3.1 Definition of Computation for CSimpl

The formal validity of a rely-guarantee tuple in this work is based on the definition of
computation, which is the set of all possible sequences of configurations resulting of
transiting the component or the environment, starting from an initial configuration.

Definition 1 (Sequential Component Computation). A computation is a tuple (Γ ,
confs) where Γ is an environment for procedures and confs is a list of sequential con-
figurations. The set of all possible computation cptn is inductively defined as follows:

– (Γ , [(P,s)]) ∈ cptn
– if Γ`c(P,s)→e (P,t) and (Γ ,(P, t)#xs) ∈ cptn then (Γ ,(P,s)#(P,t)#xs) ∈ cptn
– if Γ`c(P,s)→ (Q,t) and Γ`c(P,s)→ (Q,t); (Γ ,(Q, t)#xs) ∈ cptn then

(Γ ,(P,s)#(Q,t)#xs) ∈ cptn

Definition 2 (cp Γ P s). The set of possible computations of an environment for proce-
dures Γ starting from an initial configuration (P,s) is the set (Γ , l) such that l!0 = (P,s)
and (Γ , l) ∈ cptn.

Definition 3 (∝). conjoin [14] represented by ∝, defines an equivalence relation be-
tween a parallel computation p of n CSimpl components and a list clist of n component
computations, where for all i < n. clist!i = (Γi,cptni). (Γ , p)∝ clist iff:

– for all i < n, the length of cptni is equal to the length of p and Γi = Γ .
– for all i < n and k < length p, (cptni)!k = (ck

i ,s
k
i) and p!k = (cs,s) with cs!i = ck

i
and s = sk

i .
– for all k such that Suc k < length p, if Γ `p p!k→e p!(Suc k), then ∀i < n Γi `
(cptni)!k→e (cptni)!k; if Γ `p p!k→ p!(Suc k) then ∃i.i< n where Γi ` (cptni)!k→
(cptni)!(Suc k) and ∀ j. j 6= i Γj ` (cptn j)!k→e (cptn j)!(Suc k).

7

The last condition of conjoin states that for any step k in p, if k is an environment
step in p, then k is also an environment step in all cptni; and if it is a component step,
then there is some cptni where k is a component step and for any other cptn j, with
j 6= i, k is an environment step. Using conjoin and the set of computations and parallel
computations we prove the compositionality of the semantic of CSimpl:

Theorem 1 (CSimpl Compositionality).

xs 6= [] =⇒ par cp Γ xs s = {(Γ1,c).Γ1 = Γ∧
∃clist.(length clist) = (length xs)∧ (Γ ,c)∝clist}

Theorem 1 states that given a parallel configuration (xs,s) such that xs is not empty,
then for any parallel computation (Γ ,c) starting from (xs,s) there is a list of component
computations clist with the same length of xs and (Γ ,c)∝clist. That is, the execution
of a parallel number of components c0 . . .cn can be expressed as the execution of one
sequential component i < n where the execution of any component j 6= i is simulated by
a component environment transition. The set of parallel computations par cp P s Γ

is defined similarly to cp using parallel configurations. The right and left implications
of the equality in theorem 1 are proven first by induction on the parallel computation
and the by cases on the type of parallel and component events using conjoin.

3.2 Validity of Formulas for Rely-Guarantee in CSimpl

Based on the Rely-Guarantee definitions, we define the validity of a Rely-Guarantee
tuple from the set of all possible computations from an initial configuration. This uses
the notions of assumption of preconditions and the environment, and commitment of the
component and the postcondition.

Definition 4 (assum(pre,rely)). The assumption of a predicate pre and an environment
relation rely for an environment of procedures Γ is the set of component computations
(Γ ,cptn) such that cptn!0 = Normal s and s ∈ pre, and for any step transition in the
computation Γ `c (cptn)!k→e (cptn)!(Suc k) where Suc k < length cptn, cptn!k =
(pk,sk), and cptn!(Suc k) = (pk+1,sk+1) then (sk,sk+1) ∈ rely

Assum represents the set of component computations (Γ ,cptn) such that the state
component of the initial configuration of the computation is a Normal state satisfying
pre and for any transition of the environment in the computation the pair of the states
of the configurations in the transitions belongs to the rely relation.

To take advantage of automatic methods such as model checking, and following
the original notion of validity for Hoare triples in Simpl, the commitment assumes that
the last configuration in a computation does not end in a Fault state belonging to the
set F, which is a set of non-reachable states previously calculated using external tools.
Then the commitment is the set of computations such that component transitions belong
to the guarantee relation, and that their last configuration are final (therefore with the
program state equal to Skip or Throw) with the state component belonging to q or a.

8

Definition 5 (comm(guar,(q,a)) F). The commitment of a pair of predicates (q,a), a
relation guar, and a set of Fault states F, for an environment of procedures Γ is the
set of component computations (Γ ,cptn) such that if cptn l!(length l − 1) = (lp, ls)
and there is not a state f such that ls = Fault f and f ∈ F then for any component
transition in the computation Γ `c (cptn)!k→ (cptn)!(Suc k) where k < length cptn,
cptn!k = (pk,sk), and cptn!(Suc k) = (pk+1,sk+1) then (sk,sk+1)∈ guar, and if l is final
then ls = Normal l′s and if lp = Skip then l′s ∈ q and if lp = Throw then l′s ∈ a

Definition 6 (com validity). Validity of a specification of a component P w.r.t. a pre-
condition p, postcondition (q,a), a rely relation R, a guarantee relation G, an environ-
ment of procedures Γ and a set F of Fault states, represented as Γ |=/F P sat[p,R,G,q,a]
iff for all s, cp Γ P s∩assum(p,R)⊆ comm(G(q,a)) F

Following [12], we use a set of procedure specifications Θ that are used during the
procedure verification. The procedure specifications Θ , is a tuple which terms represent
a procedure name and its specification in terms of precondition, rely and guarantee
relations, and postcondition. Note that procedures in specifications belonging to Θ do
not need to match the procedures defined in the environment Γ .

Definition 7 (com cvalidity). CValidity of a specification of a component P w.r.t. a
precondition p, postcondition (q,a), a rely relation R, a guarantee relation G, an en-
vironment of procedures Γ , a specification of procedures Θ , and a set F of Fault
states, represented as Γ ,Θ |=/F P sat[p,R,G,q,a] iff if ∀(c, p′,R′,G′,q′,a′)∈Θ . Γ |=/F
(Call c) sat[p′,R′,G′,q′,a′] then Γ |=/F P sat[p,R,G,q,a]

The notion of validity for parallel computations is defined similarly using the def-
initions of computation, assumption, and commitment for parallel programs. We omit
these definitions due to space reasons.

3.3 Inference Rules of the Proof System

The Rely-Guarantee proof system for CSimpl extends the previous mechanization of
the logic in [9] with eight more inference rules. There are a total of fifteen rules, one for
each language constructor, plus the consequence rule. Fig. 3 shows those rules that are
either new or substantially changed w.r.t. the work in [9]. Rules Skip, and Throw are
added to handle program termination for normal and abrupt termination respectively.
Since Skip deals with normal termination it requires the normal postcondition to be
stable w.r.t. the rely relation, whilst in the case of Throw is the abrupt postcondition
which has to be stable w.r.t. the rely relation. Similarly, Catch is the complement of the
sequential rule for abrupt termination. In CSimpl, composition of programs can finish
on an abrupt state without executing the second program. Hence it is necessary stability
of the abrupt postcondition w.r.t. the rely relation. Similarly, the CATCH rule requires
stability of the normal postcondition with rely.

The Await rule requires Hoare satisfiability of the sequential program represent-
ing its body. Since the Hoare program can finish in either a normal state or an abrupt
state, it is necessary that both postconditions are stable. The precondition should also

9

Sta p R Sta q R p⊆ {s. f s ∈ q}
∀s t.s ∈ p∧ (t = f s)−→ (Normal s,Normal s) ∈ G

Γ ,Θ `/F Basic f sat [p,R,G,q,a]
BASIC

Sta p R Sta q R
p⊆ {s.(∀t.(s, t) ∈ r −→ t ∈ q)∧ (∃t.(s, t) ∈ r)}
∀s t.s ∈ p∧ (s, t) ∈ r −→ (Normal s,Normal s) ∈ G

Γ ,Θ `/F Spec r sat [p,R,G,q,a]
SPEC

Sta a R
∀s.(Normal s,Normal s) ∈ G

Γ ,Θ `/F T hrow sat [a,R,G,q,a]
THROW

Sta q R
∀s.(Normal s,Normal s) ∈ G

Γ ,Θ `/F Skip sat [q,R,G,q,a]
SKIP

Sta p R Sta q R Sta a R
∀V.Γ¬a, `/F (p∩b∩{V})c
{s.(Normal V,Normal s) ∈ G}∩q,
{s.(Normal V,Normal s) ∈ G}∩a

Γ ,Θ `/F Await b c sat [p,R,G,q,a]
AW

Γ ,Θ `/F c sat [p∩g,R,G,q,a]
Sta (p∩g)R ∀s.(Normal s,Normal s) ∈ G

Γ ,Θ `/F Guard f g c sat [p∩g,R,G,q,a]
GD

Γ ,Θ `/F c1 sat [p,R,G,q,r]
Γ ,Θ `/F c2 sat [r,R,G,q,a]
Sta (p∩g)R Sta (a∩g)R
∀s.(Normal s,Normal s) ∈ G

Γ ,Θ `/F Catch c1 c2 sat [p,R,G,q,a]
CATCH

Γ ,Θ `/F c1 sat [p,R,G,r,a]
Γ ,Θ `/F c2 sat [r,R,G,q,a]
Sta (p∩g)R Sta (a∩g)R
∀s.(Normal s,Normal s) ∈ G

Γ ,Θ `/F Seq c1 c2 sat [p,R,G,q,a]
SEQ

Γ ,Θ `/F c sat [p∩g,R,G,q,a]
Sta (p∩g)R f ∈ F
∀s.(Normal s,Normal s) ∈ G

Γ ,Θ `/F Guard f g c sat [p,R,G,q,a]
G

Γ ,Θ `/F the(Γ c) sat [p∩g,R,G,q,a]
Sta (p∩g)R c ∈ dom Γ

∀s.(Normal s,Normal s) ∈ G

Γ ,Θ `/F Call c sat [p,R,G,q,a]
C

∀s ∈ p.Γ ,Θ `/F c s sat [p∩g,R,G,q,a]
Sta p R ∀s.(Normal s,Normal s) ∈ G

Γ ,Θ `/F DynCom c sat [p,R,G,q,a]
DYNCOM

∀i<xs.R∪ (
⋃

j ∈ { j. j<xs∧ j 6= i}.(Guar(xs! j)))⊆ Rely(xs!i)
(
⋃

j<length xs.(Guard(xs! j)))⊆ G p⊆ (
⋂

i<length xs.Pre(xs!i))
(
⋂

j<length xs.(Post(xs! j)))⊆ q (
⋃

j<length xs.(Abr(xs! j)))⊆ a
∀i<xs.Γ ,Θ `/F Com(xs!i) sat [Pre(xs!i),Rely(xs!i),Guar(xs!i),Post(xs!i),Abr(xs!i)]

Γ ,Θ `/F xs SAT [p,R,G,q,a]
COMP

Fig. 3. Rely-guarantee Proof Rules for CSimpl

10

to be stable to remain unchanged under environment transitions. Since every compo-
nent transition has to belong to the guarantee relation, we add this constraint into the
Hoare triple, binding the initial states from the precondition to the final states of both
the normal and abrupt postconditions.

The rest of rules can be deduced intuitively from their semantics adding stability
of the precondition for non-terminal commands, e.g., if for branching and call for
non-recursive procedure calls; and adding also stability of the normal postcondition for
commands modifying the state.

Sta p R defines stability of a predicate p with respect to a relation R. It states that
if a state s satisfies p, then for any state s′ such that (s,s′) ∈ R, s′ must also satisfy p.

Finally the COMP is the rule for parallel composition. To apply compositionality,
the rule is applied over a tuple xs composed of a sequential component Com and rely-
guarantee specification, i.e. Pre,Rely,Guarantee,Post for Com. The rule follows [9]
taking abrupt termination into consideration, since this is an exception state, and not all
the individual computations may be in an exception state. Therefore, whilst we require
that the intersection of all component postconditions is included in the postcondition
of the parallel program, for abrupt termination we only require that the union of abrupt
postconditions is in the parallel program.

3.4 Soundness of the Proof System

We prove that the set of inference rules in the proof system is sound w.r.t. CSimpl
semantics. The proof is carried out in two steps, first we prove that the inference rules
for single components are sound. Then we show that the compositional rule for parallel
programs is also sound.
lemma SeqRG_sound:

"Γ ,Θ `/F c sat [p, R, G, q,a] =⇒ Γ ,Θ |=/F c sat [p, R, G, q,a]"

This is proved by induction on the inference rules. Axioms, i.e., those rules without
assumptions on the proof system induction, are proven based on the notion of stabil-
ity and the fact that any computation starting from them only has one component step.
Therefore we prove that the stability rule preserves the precondition under any environ-
ment step. We then show that the component step preserves the commitment.

The semantics for computation makes it cumbersome to prove the soundness for
those CSimpl constructors whose semantic is recursively defined, such as Seq, Catch,
and While. Soundness for these constructors are proven using a modular notion of com-
putation [14] and the equivalence of both types of computation. The modular compu-
tation serializes the recursive specification of computation for the CSimpl constructors.
This alternative semantics for computation unfolds the computation of CSimpl con-
structors. Soundness for these constructors is proven based on the different cases these
rules provide. The modular computation for CSimpl extends the one provided in [9]
with rules for the new language constructors, and new rules for seq and while, consid-
ering that the program in a final configurations can be Skip or Throw. The constructors
If and Call, for non-recursive function calls, are proven similarly to the axioms based
on the existence of a first component step for non-final configurations. After applying
the component transition, we prove the correctness by the inductive step.

11

Recursive procedure calls require to consider the maximum number of nested func-
tion calls invoked by an execution and we do not currently provide a rule for them. cptn
serializes the small step semantics, and it is not enough to prove soundness of recursive
procedure calls. Nevertheless, it is possible to provide such a rule for recursive proce-
dure calls, by extending with a parameter n the modular computation, which we call
cptn mod nest. n represents the limit of nested procedures for which the computation
is valid. Also, the semantics for validity must be extended to express that a formula
is valid when it invokes at least n nested function calls by intersecting the assump-
tions in com validity with the set of modular computations with limit n. Soundness
of recursive procedure calls can be proven similarly to [12], supported by the equality
(Γ , l) ∈ cptn = ∃n.(n,Γ , l) ∈ cptn mod nest and monotonicity of cptn mod nest in n.

Finally we prove the soundness for the parallel composition of programs. The proof
for Theorem 2 is immediate after proving Lemma 1, which is proven using Theorem 1
for compositionality of CSimpl semantics and validity definition.

Lemma 1 (parallel sound).
∀i<len xs.

Rp ∪ (
⋃
j∈{j. j < len xs ∧ j 6= i}. (G (xs ! j))) ⊆ (R (xs ! i)) =⇒

(
⋃
j<len xs. (G (xs ! j))) ⊆ Gp =⇒ p ⊆ (

⋂
i<len xs. (P (xs ! i))) =⇒

(
⋂
i<len xs. (Q (xs ! i))) ⊆ q =⇒ (

⋃
i<len xs. (A (xs ! i))) ⊆ a =⇒

∀i<len xs. Γ ,Θ |=/F C (xs !i) sat [P (xs !i), R (xs ! i), G (xs ! i),

Q (xs ! i),A (xs ! i)] =⇒
Γ ,Θ |=/F ParCom xs SAT [p, Rp, Gp, q,a]

Theorem 2 (par rgsound).
Γ ,Θ `/F Ps SAT [p, R, G, q,a] =⇒ Γ ,Θ |=/F (ParCom Ps) SAT [p, R, G, q,a]

4 Case Study

We apply the proof system for the specification and the verification of two XtratuM
services for inter-partition communication. The XtratuM separation micro-kernel [3]
provides spatial and temporal partitioning of applications. In a separation micro-kernel,
different partitions are executed in separated memory domains, and the only allowed
communication among partitions is by means of static dedicated channels explicitly de-
fined between two or more partitions. XtratuM provides services to manage partitions,
communicate partitions through inter-partition channels, partitions health-monitoring,
and a static cyclic scheduler. In this case study we provide a very abstract CSimpl
specification of the services to send and receive messages using queuing channels in a
parallel architecture, where the XtratuM micro-kernel is executed in several cores of a
multi-core processor. Using the Rely-Guarantee proof system introduced in section 3
we prove: (1) that the services correctly introduce and remove elements in the queues
associated with each communication channel and (2) that the number of elements in the
queues do not exceed the channel maximum capacity. The specification and proofs are
comprised of more than 3500 lines of specification.

12

4.1 Queuing Inter-partition Communication Description

Queuing inter-partition communication services let partitions to escape from the iso-
lated environment that XtratuM provides, allowing them to send and receive messages
to/from other partitions using communication channels by means of dedicated ports as-
signed to partitions. A communication channel is an entity storing the communication
data and the source and destination ports involved in the communication.

XtratuM implements two types of communication: sampling and queuing commu-
nication. While the former only allows to store one message, and it is multicasting,
i.e., a channel has one source port and a list of destination ports. The latter allows to
store many messages in a bounded buffer implemented as a queue, and only allows peer
to peer communication, i.e., the channel has one source port and one destination port.
Channels and ports are classified according to the type of communication. Therefore,
a channel and a port can be of type sampling or queuing, and a sampling channel can
only allocate sampling ports, and vice-verse. The services have as input a port to/from
which the message is sent/received, and the message to be send in the case of the send-
ing service. Prior to modifying the queue, the services check whether the input values
are consistent, e.g., the port which receives the message belongs to the partition, or it is
a source or destination port depending on the invoked service. In the present case study
we will focus on queuing communication.

4.2 State and Specification Definition

The state definition provides global and local variables. Global variables represent those
variables shared by multiple instances of the micro-kernel, they hold the data for inter-
partition communication, partitions, and the partition scheduler. Since we are targeting
only queuing inter-partition communication, the components for the scheduler and par-
titions contain the necessary information for those services. The scheduler is highly
abstracted and only contains information about the partition that is currently being ex-
ecuted, and therefore invoking the service; partitions only contain the list of assigned
ports to the partition. The communication datatype includes the specification of chan-
nels and ports. A channel is defined as a datatype with the two possible types of chan-
nels, having as parameters the source and destination ports, and the message shared
between the partitions, for which the queue is abstracted in the model as a multiset.
The queuing channel also has as parameter the maximum size of the channel buffer.
Messages are modelled just as an abstract entity.

datatype port = Port port_id port_name port_direction

datatype channel =

Sampling_C chan_id port_id "port_id set" "Message option"

|Queuing_C chan_id port_id port_id max_buffer_size "Message multiset"

record com = ports :: "port_id ⇀ port" channels :: "chan_id ⇀ channel"

record vars = p_’ :: "part_id ⇀ partition" c_’ :: "com"

s_’ :: "scheduler list" l_’ ::"locals list"

In the model, ´l, ´c, ´s, and ´p access the locals, communication, scheduler, and
partition component of the state, respectively. Local variables for each process are a

13

structure with the necessary variables for the input and output parameters of the ser-
vices. One of the limitations of Rely-Guarantee is that the relations lose track of the
sequence of executed operations. To solve this, verification of the concurrent increment
of a variable, or adding/removing elements from a set like in this example, requires
using additional variables that help to track the changes [14]. To support the verifica-
tion, local variables of processes include an auxiliary variable of type Message option

that is initialized to None, and when a message is correctly sent or received the model
assigns it to the auxiliary variable. Our state abstracts and map XtratuM global struc-
tures xmcCommChannelTab, and xmcCommChannelPorts into the components of ´c
and xmcPartition into ´p respectively.

The parallel execution of services is modelled parametrically on the number of pro-
cesses, which is defined as a fixed natural number within a Isabelle/HOL locale [7].
Each service is modelled as a procedure that is also parametrized by the process be-
ing executed; this allows that each specific procedure only accesses its local variables.
The function Γ is generated by assigning a unique name for each service using a fold
higher order function and assigning to each parametrized service name the correspond-
ing parametrized body of the service. The parametrized event receive is shown below.
definition receive_q_message_i where "receive_q_message_i i ≡
(IF (¬ (ex_port_id ´ c ((pt ((´ l)!i))))) ∨

(¬ (port_q (the ((ports ´ c) (pt (´ l!i)))))) ∨
(¬ (port_dest (the ((ports ´ c) (pt (´ l!i)))))) ∨
(¬ port_in_part ´ p ((´ s)!i) (the ((ports ´ c) (pt (´ l!i))))) THEN

´ l :== ´ l[i:=((´ l!i)(|ret_msg := None|))]
ELSE AWAIT True

IFs port_empty (pt ((´ l)!i)) ´ c THEN

´ l :==s ´ l[i:=((´ l!i)(|ret_msg := None|))]
ELSE

´ l :==s ´ l[i:=((´ l!i) (|ret_msg := port_get_msg (pt (´ l!i))´ c |))] ;;s
´ c :==s port_rem_msg (pt (´ l!i)) (the (ret_msg (´ l!i))) ´ c ;;s

´ l :==s ´ l[i:=((´ l!i) (|aux_msg := (ret_msg (´ l!i)) |))]
FI FI)

The events abstract the low level behaviour of the Xtratum functions into three
stages: parameters checking, lock of mutex, and insertion/extraction to/from the queue.
Validation of correctness of the model w.r.t. the implementation is carried out at this
stage by inspecting the code. For the ReceiveQueuingPort model, the event first
checks that the accessed port exists in the current communication state, that it is a
queuing and destination port, and that the partition that it belongs to the partition be-
ing executed. If any parameter is not valid then the service finishes returning None. If
the parameters are correct then it performs the operations over the channel queue after
checking whether the queue is not empty for event receive, or not full for event send.
The statements in the body of the Await statement are IFs and :==s. This is because the
body of the Await is a sequential Simpl program, and it is necessary to provide a dif-
ferent syntax sugar than that used for CSimpl statements. Accessing shared variables,
i.e., checking the queue size and modifying the queue of the input port, is done using
an atomic block to ensure mutual exclusion. The other event is modeled similarly.

14

4.3 Verification

For the parallel verification it is first necessary to specify the rely and guarantee relations
for the receive and send services. We show the rely relation, the guarantee relation is
similar to this, only differing in that local variables for any process j different than i
will not be modified.
definition Rely where
"Rely_Send_Receive B i≡ {(x,y). (∃x1 y1.

x=Normal x1 ∧ y=Normal y1 ∧ (l_’ x1)!i = (l_’ y1)!i ∧ s_’ x1 = s_’ y1 ∧
ports (c_’ x1) = ports (c_’ y1) ∧ p_’ x1 = p_’ y1 ∧
(x1 ∈ Invariant B −→ y1 ∈ Invariant B)) } "

Since parallel programs do not change others programs’ local variables, the i ele-
ment in the list of local variables is not changed by the rely. Also, ports, partitions, and
the scheduler are not changed by any service, therefore the rely relation does not change
them. Finally, if the initial state of the relation preserves the invariant, it also preserves
the shape of the channel’s queues, then so does the final state of the relation.

The invariant establishes consistency of the port and channel structures that must
be preserved by the services. Its most important specification is channel spec which
preserves the specification of the queue for every defined channel in the state.
definition channel_spec where "channel_spec B ≡
{| ∀c_id c. (channels ´ c) c_id = Some c −→

chan_get_msgs c = (B c_id + chan_sent_msgs c_id ´ c ´ l) -

chan_rec_msgs c_id ´ c ´ l ∧
(size (chan_get_msgs c) ≤ chan_get_max_bufs c) ∧
chan_rec_mes c_id ´ c ´ l) ⊆# B c_id + chan_sent_msgs c_id ´ c ´ l |}"
channel spec checks that the multiset modelling the queue for each defined ch

id is equal to its initial value, which is given by B c_id; those messages correctly sent
are pushed into the queue by the service; and that the received messages are popped out
of the queue. chan sent\rec msgs gets for each ch id the multiset with the auxiliary
variables different than None, meaning that the service has modified the queue for that
channel. Also, for consistency of the multiset, the invariant needs to ensure that removed
messages are a subset of the added messages.

Lemma 2 (Send Rec Correct).
n>0 =⇒ Γ ,{} `/{} (COBEGIN SCHEME [0 ≤ i < n]

(ex_service i, pre_i B i, Rely B i, Guar B i, Post_Arinc B, {| True |})
COEND) SAT [Pre_Arinc B, {(x,y). (∃x1 y1. x=Normal x1 ∧ y=Normal y1 ∧

x1 = y1)}, {| True |}, Post_Arinc B, {| True |}]

ex service is a sequence of nested i f s controlling the call to the services, each
i f guarded by a local variable that indicates which service is invoked in each parallel
process. In the parallel program, the rely relation indicates that the parallel environ-
ment does not change the state, being therefore a closed system, i.e., there is not any
environment at the parallel level. The guarantee relation is the universal set in which
everything can be modified. The precondition Pre Arinc B defines the invariant and
auxiliary variables initialization to None. The precondition for each process pre i B i

sets the initial value for the auxiliary variable, the initial values of the channel queues,

15

and it defines the invariant that is preserved by the postcondition for the normal ter-
mination Post Arinc B. The abrupt postcondition is the universal set since we do not
have any abrupt termination in this specification. The postcondition is the same for the
parallel specification and for the components.

The proof obligations for the parallel rule are proved immediately after unfolding
the definitions of the precondition, postcondition, and rely and guarantee relations. Af-
ter applying the parallel rule on the parallel execution of the n components, it is neces-
sary to prove that the parametrized execute service satisfies the postcondition using
the rely-guarantee rules for components. Once the conditional and call rules have
been applied on execute service, only the proof of the verification of each service
body is left. Both send and receive services are similarly proven.

To prove the body of the services, it is necessary to apply the conditional rule to
generate the proof obligations for the execution of two branches of the if. The first
corresponds to the case in which the service is not invoked with the appropriate param-
eters and is immediately proven after apply the Basic rule since it does not modify any
channel or auxiliary variable. For the second branch, after invoking Await, the sequen-
tial Simpl program representing its body is automatically unfolded using Simpl’s VCG.
The resulting goal, now without any embedded Simpl specification, is solved by prov-
ing that the state after removing or inserting a message from/to the channel associated
to the input port, and after assigning the removed/inserted message to the auxiliary vari-
able, satisfies channel spec. We use some auxiliary lemmas to prove it: first, that the
modification of the auxiliary variable in a component does not modify the sets chan
sent msgs and chan rec msgs for any channel other than the one associated to the
port the service access; second, that the modification of a variable only modifies one
of these sets. Using these auxiliary lemmas the postcondition is proven immediately by
applying the properties over multisets.

5 Conclusions and Future Work

In this work we have presented CSimpl, a framework for specifying concurrent pro-
grams and verifying their partial correctness using Rely-Guarantee. This framework
allows us to specify programs written in a large subset of the C language. Currently we
are working also on axiomatic separation rules for the proof system following works
on separation logic and rely guarantee [13, 5]. This will help to cope with local vari-
ables and to hide global variables, thus improving scalability of the approach. There
are, however, some aspects where this framework can be improved. First, we can in-
troduce deadlock freedom and weak total correctness, which enable us to reason about
termination of programs. Second, we can provide VCG tactics to achieve a higher level
of automation. Currently, the language supports annotation to provide loop invariant,
but the soundness of annotated rules is yet to be proven. Third, it is also desirable to
have completeness of the proof system to introduce properties proven at the language
and semantics levels. The complexity of proving completeness make us to consider this
as future work. Finally, the current proof system do not include a rule for recursive
procedure calls, but our framework can be easily extended to support it, with minimal
modifications on the rules already proven.

16

References

1. Armstrong, A., Gomes, V.B.F., Struth, G.: Algebraic principles for rely-guarantee style con-
currency verification tools. In: Proceedings of 19th International Symposium on Formal
Methods (FM). pp. 78–93 (2014)

2. de la Cámara, P., del Mar Gallardo, M., Merino, P.: Model extraction for arinc 653 based
avionics software. In: Proceedings of 14th International SPIN Workshop on Model Checking
Software. pp. 243–262 (2007)

3. Carrascosa, E., Coronel, J., Masmano, M., Balbastre, P., Crespo, A.: Xtratum hypervisor
redesign for leon4 multicore processor. SIGBED Rev. 11(2), 27–31 (Sep 2014)

4. Coleman, J.W., Jones, C.B.: A structural proof of the soundness of rely/guarantee rules.
Journal of Logic and Computation 17(4), 807–841 (Aug 2007)

5. Feng, X.: Local rely-guarantee reasoning. SIGPLAN Not. 44(1), 315–327 (Jan 2009)
6. Jones, C.B.: Development Methods for Computer Programs including a Notion of Interfer-

ence. Ph.D. thesis, Oxford University (Jun 1981)
7. Kammüller, F., Wenzel, M., Paulson, L.C.: Locales: A sectioning concept for isabelle. In:

Proceedings of 12th International Conference on Theorem Proving in Higher Order Logics
(TPHOLs). pp. 149–165. Springer (1999)

8. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: Formal
verification of an os kernel. In: Proceedings of the ACM SIGOPS 22Nd Symposium on
Operating Systems Principles (SOSP). pp. 207–220. ACM, New York, NY, USA (2009)

9. Nieto, L.P.: The rely-guarantee method in Isabelle/HOL. In: Proceedings of the 12th Euro-
pean Conference on Programming (ESOP). pp. 348–362. Springer-Verlag (2003)

10. Nipkow, T., Nieto, L.P.: Owicki/gries in isabelle/hol. In: Proceedings of Second Interna-
tional Conference on Fundamental Approaches to Software Engineering (FASE). pp. 188–
203 (1999)

11. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs i. Acta Informatica
6(4), 319–340 (1976)

12. Schirmer, N.: Verification of Sequential Imperative Programs in Isabelle/HOL. Ph.D. thesis,
Technischen Universitat Munchen (2006)

13. Vafeiadis, V., Parkinson, M.: A Marriage of Rely/Guarantee and Separation Logic, pp. 256–
271. Springer Berlin Heidelberg (2007)

14. Xu, Q., de Roever, W.P., He, J.: The rely-guarantee method for verifying shared variable
concurrent programs. Formal Aspects of Computing 9(2), 149–174 (1997)

15. Zhao, Y., Yang, Z., Sanán, D., Liu, Y.: Event-based formalization of safety-critical operating
system standards: An experience report on arinc 653 using event-b. In: Proceedings of IEEE
26th International Symposium on Software Reliability Engineering (ISSRE). pp. 281–292
(Nov 2015)

16. Zhao, Y., Sanán, D., Zhang, F., Liu, Y.: Reasoning about information flow security of separa-
tion kernels with channel-based communication. In: Proceedings of 22nd International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
pp. 791–810 (2016)

